Robot-Aided Rehabilitation Methodology for Enhancing Movement Smoothness by Using a Human Hand Trajectory Generation Model With Task-Related Constraints
نویسنده
چکیده
Natural motion produced by the biological motor control system presents movement smoothness, but neurological disorders or injuries severely deteriorates motor functions. This paper proposes a robot-aided training methodology focusing on smooth transient trajectory generation by the arm while performing a complex task (i.e., virtual curling). The aim of the proposed approach is that a trainee should be taught a reference velocity profile with high movement smoothness in the complex task via the interaction with a robotic device while improving coordination ability for natural arm movements. In the virtual curling training, a trainee manipulates the handle of an impedance-controlled robot to move a virtual stone to the center of a circular target on ice while predicting transient behaviors of the released stone. First, a reference hand motion is clarified through a set of preliminary experiments for different task conditions carried out with four welltrained subjects, and the characteristics of skilled hand velocity profiles are coded with a set of quantitative factors as task-related constraints. The skilled hand motions according to task conditions are successfully simulated in the framework of a minimum-jerk model with the taskrelated constraints. Next, the training program for enhancing movement smoothness is developed using the computational model, which has four training modes of operation: 1) diagnosis, 2) teaching with active-assistance by the robot, 3) training with passive-assistance, and 4) training with no assistance. Finally, training experiments with ten novice healthy volunteers demonstrate that the proposed approach can be utilized in the recovery of motor functions necessary for desired velocity profiles with high motion smoothness.
منابع مشابه
Adaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملOptimal Trajectory Generation for Energy Consumption Minimization and Moving Obstacle Avoidance of SURENA III Robot’s Arm
In this paper, trajectory generation for the 4 DOF arm of SURENA III humanoid robot with the purpose of optimizing energy and avoiding a moving obstacle is presented. For this purpose, first, kinematic equations for a seven DOF manipulator are derived. Then, using the Lagrange method, an explicit dynamics model for the arm is developed. In the next step, in order to generate the desired traject...
متن کاملTrajectory Planning Using High Order Polynomials under Acceleration Constraint
The trajectory planning, which is known as a movement from starting to end point by satisfying the constraints along the path is an essential part of robot motion planning. A common way to create trajectories is to deal with polynomials which have independent coefficients. This paper presents a trajectory formulation as well as a procedure to arrange the suitable trajectories for applications. ...
متن کاملReconstructing human push recovery reactions using a three dimensional under-actuated bipedal robot
This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...
متن کاملHuman arm kinematics for robot based rehabilitation
The paper considers a technique for computation of the inverse kinematic model of the human arm for robot based rehabilitation that uses measurements of the hand position and orientation and radial acceleration of the upper arm. Analytical analysis and empirical validation of the method are presented. The algorithm enables estimation of human arm angles, which can be used in trajectory planning...
متن کامل